ARITHMETIC IN MAYA NUMERALS

W. FRENCH ANDERSON

ABSTRACT

Arithmetical procedures, including addition, subtraction, multiplication, division, and square root extraction,
are demonstrated using the Maya numerals. All procedures can be carried out efficiently. The Maya system is
relatively unique in that it combines properties of both place-value and non-place-value numerical systems. The
Babylonian system, discussed briefly, also utilizes a mixture of properties from the two systems. In order to take
into account the unique hybrid characteristics of these two systems, as well as the subtractive principle of the
Roman numerals, we here define a third category of numerical systems designated as mixed-place-value in type.
The three types of numerical systems are compared and the advantages and disadvantages of each are mentioned.
The evolutionary development of numerical systems in relation to the mathematical needs of societies is
discussed.
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NUMERICAL SYSTEMS have been classified in the past into two types. The first is the
place-value system represented by our own Hindu-Arabic numerals, by modern Chinese, etc. The
second is the non-place-value system, represented by Minoan Linear A and B, by Egyptian
hieroglyphics, by Greek acrophonic and alphabetical numerals, etc. We define here a third group of
numerical systems which are hybrid in structure and for which we propose the designation
mixed-place-value numerical systems. This third group is represented by the Maya, the Babylonian,
and the Roman numerals. The Roman numerals constitute primarily a non-place-value system, but
because of the use of the subtractive principle (e.g., IV represents four while VI represents six),
they can be classified in the third group.

Using the Minoan Linear B numerals as an example, it already has been shown that non-place-
value numerical systems can be efficiently utilized to carry out arithmetical calculations (Anderson
1958). By taking the subtractive principle into account, the Roman numerals can be used in the
same manner as the entirely non-place-value systems (Anderson 1956). This paper will compare
and contrast all three types of numerical systems and will examine one mixed-place-value system,
the Maya, in detail.

THE BABYLONIAN NUMERICAL SYSTEM

The Babylonian system of numerals will be described briefly. It contains only two symbols, v
and <, made by pressing a wedge-shaped stick into the ground or into clay tablets either with the
tip pointing down, or to the left. The system makes use of the position of the symbol to represent
its value: viz., v is 1, 60, or 3600 depending on position, while < is 10, 600, or 36,000. The
number 671, for example, is represented by < v <V (600 + 60 + 10 + 1). Besides this place-value
characteristic, the Babylonian system also utilizes a subtractive principle similar to that of the
Roman numerals. However, the system also has a strong non-place-value characteristic in that all
intermediate numbers (i.e., 2 to 9 and 11 to 59) are represented by repeating the basic symbol,
rather than by unique separate symbols. xvx represents six; 33 is written as<<<VvvVv (10+ 10+

10 + 1 + 1 + 1). This hybridization of place-value and non-place-value properties makes the
Babylonian system a mixed-place-value notation. Unpublished studies have shown that the system
can be used effectively for arithmetical calculations.

THE MAYA NUMERICAL SYSTEM

The Maya numerical system is unique. It contains only three symbols:

< zero . one — five
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The Maya vigesimal system of notation is described in detail here. All numbers from 1 to 19 are
written in a pure non-place-value notation; to illustrate; 8 is = , 14is = , 16 is =, etc. For
larger numbers, however, a pure place-value component is added. Each larger Maya number is
composed of sections: a lower, or first level, with one or more higher levels written above it. All
symbols in each level are multiplied by their place-value factor. The first level factor is 1; the
second level factor is 1 x 20 equals 20; the third level factor is 1 x 20 x 20 equals 400; and the
fourth level factor is 1 x 20 x 20 x 20 equals 8000. Thus, this is a place-value system with a base of
20, i.e., a vigesimal system.

. 1x 8000 8000
= == = — 5x 400 2000
e+ = leeee or — 12x 20 240
—= == = — 5x 1 __ 5

(4567)  (5678) 10245

Fig. 1. Addition of 4567 plus 5678 in Maya numerals using the vigesimal notation; compare with Fig. 2 in
which the same problem is solved in calendrical notation.

. 1X7200 7200
= = E o 8X 360 2880
= 4 == 2 = or = 8X 160
= = = — 85X 1 _ s

4567)  (5678) 10246

Fig. 2. Addition of 4567 plus 5678 in Maya numerals using the calendrical rather than the vigesimal notation;
compare with Fig. 1.

The Maya also used, for chronology, a calendric notation which is only slightly different, and
which can be utilized with equal effectiveness (compare Figs. 1 and 2). The calendrical system uses
only 18 units in the second level. Consequently, each unit in the third level represents 360 (1 x 20
x 18), rather than 400; each unit in the fourth represents 7200 (1 x 18 x 20 x 20), rather than
8000. Except for the example shown in Fig. 2, we will not again refer to the calendrical notation.
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To illustrate the use of the vigesimal system, “— represents 146. The first level — is 6; the
second level = ,is 7 x 20 equals 140. Thus, 6 plus 140, or 146. <> represents 60; i.e., zero
plus 3 x 20. 65,432 is represented by:

= 8x 8000 64000
. 3x 400 1200
= 11x 20 220

= 12x 1 12
65432

ADDITION AND SUBTRACTION WITH MAYA NUMERALS

Arithmetical calculations in a mixed-place-value system are only somewhat more complex than
those in a pure non-place-value system. Addition and subtraction in Maya numerals still remain far
less complicated than in place-value systems, such as our own Hindu-Arabic. Addition requires
only the counting of symbols, care being exercised to keep symbols on their proper levels. For
example, as shown in Fig. |, to add 4,567 and 5,678, the two numbers are placed side-by-side and
the total number of each symbol for each level are combined, working from the bottom level to
the top, for the answer. This answer is simplified by combining symbols, since five dots is the
equivalent of a dash on the same level and four dashes convert to a dot in the next higher level.

4567
+ 5678

10245

This same problem is solved in Fig. 2 using the calendrical notation in order to illustrate that
either notation can be used equally effectively for arithmetical calculations.

Subtraction requires only the cancelling of symbols. Since in the Maya numerical system no
subtractive principle is employed (in contrast to the Roman numerals and the Babylonian
notation), the procedure is simply mechanical. If there are insufficient dots in a level of the
minuend, then one of the bars of that level is converted to five dots. If there are insufficient bars,
then a dot from the next higher level is converted to four bars in the lower level. For example, the
subtraction of 52,963 from 97,549 is shown in Fig. 3.

97549
— 52963

44586

| L

minus equals minus equals

I

(97,549) (52,963 (44,586)

Fig. 3. Subtraction of 52,963 from 97,549 in Maya numerals. Compare with Fig. 4 in which the same
problem is solved in a non-place-value system, the Minoan Linear B.
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SUBTRACTION WITH MINOAN LINEAR B NUMERALS

In order to illustrate the different characteristics of the three classes of numerical systems, the
above subtraction problemisrepresented in a non-place-value system, Minoan Linear B, in Fig. 4.

The numerals are as follows: | one, - ten, o one hundred, ¢ one thousand, ¢ ten thousand.

In the Minoan system, there is no effect of position on the value of a symbol. Although, merely
for convenience, the symbols are grouped with those of higher value on the left and those of lower
value on the right, this arrangement is not essential. The numbers are only collections of individual
symbols, and these symbols could be placed anywhere along the line. In contrast to this
pure non-place-value system of notation, the addition of the place-value component to the Maya
numerical system greatly reduces the number of symbols required to express large numbers.
Minoan numerals required five different symbols used for a total of 86 occurrences to solve the
above problem. The Maya numerals, being mixed-value with a vigesimal base, required 41
occurrences of only two (potentially three) symbols. Hindu-Arabic, our place-value system,
required only 15 occurrences but of eight (potentially ten) different symbols.

RS SoRe R es 00O ! (97,549)
e 00O 00 - 10
$68 % i
49 & So e 00O - - - 1 (52,963)
© @ O 0O - - -
(oo Ne]
(0] - - = (44,586)
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&
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(o)e}

Fig. 4. Subtraction of 52,963 from 97,549 in Minoan Linear B, a non-place-value numerical system. Compare
with Fig. 3.

MULTIPLICATION WITH MAYA NUMERALS

Multiplication, although in principle as easy in Maya as in Hindu-Arabic, can become difficult in
practice because of the number of symbols involved in any large problem. The process itself,
however, is simple. It consists of multiplying each character of the multiplicand (the top number
in a Hindu-Arabic problem; the right hand set of symbols in Maya) by each character of the
multiplier (the bottom number or the left hand set of symbols), being careful to keep characters in
their proper levels.

The Maya multiplication tables can be determined and are shown in Fig. 5.

To illustrate the process of multiplication, — is multiplied by — in Fig. 6. The problem is
set up on the left. The partial product resulting from the multiplication by each symbol of the
multiplier is shown in the middle, all levels being maintained across the sheet. The partial products
are added together to give the final answer as is shown on the right.

26
X 6

156
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A more complicated problem is the multiplication of = by = and is shown in Fig. 7.
572
X 127
4004
1144
572
72644
X . = . X @ = @
X —_— = —_— X @ = @
— x . = — N e =
— X — = _. —_— X @ = @
. A - <> S Y
> x & = <> L>  x <
_ B
J— > . <>
<> x & = & X gy - 2D
@ @
— . =
=.x-2 =5-Z-2
<>
— — =
— — R — >
> X B = L> x = O
<> <> >

Fig. 5. The Maya multiplication tables.
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- = equals S = . =
multiplication by — ¢« —
6) (26 (156)

Fig. 6. Multiplication of 26 by 6 in Maya numerals.

—_ —= equals —=

L

Fa

127) (572) (72,644)

(0

Fig. 7. Multiplication of 572 by 127 in Maya numerals.

DIVISION WITH MAYA NUMERALS

Division in Maya maintains the advantage of non-place-value systems in that it is not necessary
at each step to determine the exact number of times the dividend can be divided by the divisor.
For example, when dividing 63 by 3 in Hindu-Arabic, it is necessary to use 2 (actually 20) as the
first number of the quotient. This is true because in a place-value system each position of the
answer (ones, tens, hundreds, etc.) can be filled by only a single symbol; therefore, that symbol
must be the correct one. In a non-place-value or mixed-place-value system, in contrast, more than
one symbol can be present. This fact greatly simplifies the mental processes required for dividing.
For example, in order to divide 246 by 6 in Maya, the problem could be set up as illustrated in
Fig. 8. The levels are maintained across the page in the same manner that the decimal positions are
maintained vertically when the problem is solved in Hindu-Arabic.

_41
6)246

o o 15
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(6)

(246)

(41)

Fig. 8. Division of 246 by 6 in Maya numerals.

A more complicated problem, the division of 3591 by 133 in Maya, is shown in Fig. 9.

27

133)3591
266
931

931

(133)

Answer: =" (27)

Fig. 9. Division of 3591 by 133 in Maya numerals. Compare with Fig. 10.

To illustrate the flexibility of the process of division, the above problem can be solved by
making a less efficient initial choice for the quotient, as shown in Fig. 10. This example also
demonstrates that two or more symbols can be added to the quotient at each step.

SQUARE ROOT EXTRACTION WITH MAYA NUMERALS

Since it has been demonstrated that Maya numerals can be used for performing the four basic
processes of arithmetic (viz., addition, subtraction, multiplication, and division), this numerical
system can be utilized fer any arithmetical computation desired. To illustrate, the operation of
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extracting the square root of 225 in Maya is performed in Fig. 11. The procedure is very similar to
the operation for place-value systems. At each step, a number is found which, when multiplied by
the quotient doubled plus the number, can be cancelled from the remaining dividend. In a
place-value system, the exact number must be used at each step. This requirement, just as in
division, does not apply to Maya, although the procedure takes longer if the largest possible
number is not used at each operation. The temporary multiplicand is placed at the bottom of the
figure, rather than to the left (as shown below for Hindu-Arabic).

V225 15

11
125
25 125

.
D . XXX

i
|
§

Fig. 10. Division of 3591 by 133 in Maya numerals. This is the same problem as shown in Fig. 9, but in this
case, a different symbol, is used in the first step of division. The final answer is, of course, the same.

|
|
|
|
I

I

Temporary — N

I

multiplicand

(225) (5)

Fig. 11. Extraction of the square root of 225 in Maya numerals.
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A more complicated problem, the extraction of the square root of 51,076 in Maya, is shown in
Fig. 12.

V51076 | 226

2 4 T
110
42 84
2676
446 2676

The presence of a remainder, either in division or in the extraction of a square root, creates no
difficulty.

I

o

0
|

:

< =

ol

Fig. 12. Extraction of the square root of 51,076 in Maya numerals.

DISCUSSION

Like all other numerical systems so far studied, the Maya system does not offer any serious
obstacles to performing arithmetical computations. The apparent difficulty lies only in the
unfamiliarity of the symbols and the few, though significant, differences involved in operating a
mixed-place-value or non-place-value system instead of our own familiar place-value system.

A place-value system of notation is far less cumbersome in manipulating large numbers than a
non-place-value system since ‘“‘place-value” means that individual symbols do not have to be
repeated a number of times. Such a result is obtained, however, only by adding the concept of a
symbol which varies in value depending on its position. A relatively primitive society, such as the
Minoan, would probably find such a numerical system too complex for its needs. The
requirements of most primitive societies are presumably satisfied by a system permitting tallying,
together, perhaps, with the recording of numbers. As has been demonstrated (Anderson, 1956;
1958), addition and subtraction, the key elements of tallying, are far simpler in a non-place-value
or mixed-place-value system of notation. The disadvantage of a mixed-place-value system as
illustrated by the Maya, however, is the potential ease with which a symbol might be inadvertently
transposed between levels. In addition, in the Babylonian and the Roman numeral systems the
subtractive principle requires vigilance. Thus, the mixed-value systems, although useful in reducing
the total number of symbols required for carrying out large problems, have their own inherent
cumbersome properties. Pure place-value systems require considerably more abstract thinking in
their use, but, in return, offer the greatest advantages, not the least of which is the ability to carry
out an answer to any desired degree of accuracy.
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Numerical systems appear to have undergone a process of evolution similar to societies overall.
Primitive societies, for reasons outlined above, utilized simple non-place-value numerical systems.
As societies became more complex, they required systems of notation which could deal with larger
numbers and which could be utilized more effectively for performing complex operations.
Consequently, place-value components were added to give a mixed-place value system; or else a
pure place-value system was developed.

It is sometimes stated that the adoption of the place-value Hindu-Arabic system with its
decimal notation and symbol for zero should be credited with enabling the scientific revolution to
occur. It is just as possible, however, that the converse is true, namely, that the more sophisticated
numerical systems, whether Hindu-Arabic or Maya, were developed in order to meet the more
complex requirements of the society. The Hindu-Arabic system went far to satisfy the needs of the
western civilization, although a duodecimal notation might have been equally or more efficient.
The even more sophisticated requirements of computer mathematics utilize still another type of
place-value notation: the binary system which, like the Babylonian system, has only two symbols.
Unlike the Babylonian system, however, it is pure place-value with a base of two.

It is not assumed that the Mayas ever used their numerical system in the manner described in
this paper. How their calculations were actually performed is not known at present. J. E. S.
Thompson has examined the possible methods of computation that might have been employed for
certain calendrical calculations and concludes that a counting device, perhaps resembling a simple
abacus, might have been utilized (Thompson 1941, 1950). That extensive calculations were
performed, particularly involving their calendrical and astronomical studies, can hardly be doubted
(Thompson 1960; Satterthwaite 1947). Considering the sophistication revealed by some of these
studies, it is not unreasonable to suggest that some attempt to use the numerals directly in
computations might have occurred.
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