Guernsey, Samuel James
1931 Explorations in northeastern Arizona. Peabody Museum of American Archaeology and Ethnology, Harvard University, Papers 12(1).
Hill, Malcolm W.
1948 The atlatl or throwing stick: a recent study of atlatls in use with darts of various sizes. Tennessee Archaeologist 4:37-44.
Kidder, A. V., and S. J. Guernsey
1919 Archaeological explorations in northeastern Arizona. Bureau of American Ethnology, Bulletin 65.
1921 Basket-Maker caves in northeastern Arizona. Peabody Museum of American Archaeology and Ethnology, Harvard University, Papers 8(2).
Mallam, R. Clark
1971 An atlatl weight from southeast Nebraska. Plains Anthropologist 16:123-24.
Mason, J. Alden
1928 Some unusual spear throwers of ancient America. The Museum Journal 19:290-324. University of Pennsylvania.
Mau, Clayton
1963 Experiments with the spear thrower. The New York State Archaeological Association Bulletin 29:1-13.
McGregor, John C.
1965 Southwestern archaeology. University of Illinois Press, Urbana.
Metcalf, George, and Harold Carlson
1971 An atlatl weight from North Dakota. Plains Anthropologist 16:121-22.
Murdoch, John
1892 Ethnological results of the Point Barrow
expedition. Bureau of American Ethnology 9th Annual Report, 1887-88, pp. 3-441.
Neuman, Robert
1967 Atlatl weights from certain sites on the northern and central Great Plains. American Antiquity 32:36-53.
Parker, Arthur C.
1917 Notes on the banner stone with some inquiries as to its purpose. New York State Museum Bulletin 196:165-76.
Peets, Orville H.
1960 Experiments in the use of atlatl weights. American Antiquity 26:108-10.
Spencer, B., and F. J. Gillen
1899 The native tribes of central Australia. London.
Sweatman, John
1848 Journal of a surveying voyage to the northeast coast of Australia and Torres' Sts, in Her Maj. Schooner, Bramble, Lieut. C. B. Yule, Commander, 1842-47. Mitchell Library, MS. A1725. Cambridge.
Webb, William S.
1946 Indian Knoll. University of Kentucky, Reports in Anthropology 4(3, pt. 1).
Webb, William S., and David L. De Jarnette
1942 An archaeological survey of Pickwick Basin in the adjacent portions of the states of Alabama, Mississippi, and Tennessee. Bureau of American Ethnology, Bulletin 129.
Webb, William S., and William G. Haag
1939 The Chiggerville shell heap in Ohio County. Department of Anthropology and Archaeology, University of Kentucky, Publication 4(1).

ON THE ORIENTATION OF PRECOLUMBIAN BUILDINGS IN CENTRAL MEXICO

Anthony F. AvEni
SHARON L. GIBBS

A tendency for many precolumbian buildings to, align east of north is examined for possible astronomical motives. Stellar and solar phenomena are suggested as possible influences. The importance of clearly establishing the relative positions of observer and point of reference in any archaeo-astronomical analysis is emphasized. Certain misconceptions concerning chronological correlations of alignments and a new dimension in establishing orientations are discussed.

One fact which emerges from a careful study of the orientation of many precolumbian buildings of Central Mexico is the tendency for their north-south axes to align slightly east of astronomical north. In an earlier paper, Aveni (1975) reported that, on the basis of measurements made with a surveyor's transit, three Central Mexican sites (Tepozteco, Tenayuca, and Tula) possess nearly the same orientation as Teotihuacan ($15^{\circ} 25^{\prime} \mathrm{E}$ of N). It is likely that Teotihuacan served as a model for the other
sites, and that architects copied the sacred direction by laying out an astronomical baseline at the model site and transferring it to the new ceremonial centers. This same orientation appears in the Toltec period buildings at Chichen Itza (Aveni, Gibbs, and Hartung 1975). The present paper reports the results of measurements taken with a transit during January 1974 at ten additional sites in Central Mexico and suggests possible astronomical motives for the orientations thus found.

The orientations of all Central Mexican sites studied to date are listed in Table 1. The measuring techniques employed and range of accuracy have been discussed elsewhere (Aveni 1975). Building periods range from approximately 500 B.C. to A.D. 1500 , but because of the uncertainty of the dates of completion of many structures, exact times are excluded from the table. Fig. 1 is a polar diagram showing the averaged orientation of each measured site. In all 14 cases the axes are skewed clockwise from the cardinal directions, ranging from $0^{\circ} 25^{\prime} \mathrm{E}$ of N at Xochicalco to $27^{\circ} 05^{\prime} \mathrm{E}$ of N for the Teotihuacan period ballcourt at Manzanilla, Puebla. In no case is an axis displaced counterclockwise from the cardinal directions.

We find no correlation between site axiality and site latitude or time of construction. The axis of Cuicuilco, the earliest building of those we measured, shows a clockwise skew ranging from $1^{\circ} 43^{\prime}$ to $7^{\circ} 38^{\prime}$, depending upon which measurement can be accepted given the ruined state of the stairway leading to the top of the building. On the other hand, the Teopanzolco pyramid in Cuernavaca, one of the latest precolumbian buildings to be constructed, has its outer face skewed clockwise from the cardinal points by only $00^{\circ} 43^{\prime}$. At Tlatelolco, the largest structure exhibits nine different building phases. The orientations range between $7^{\circ} 39^{\prime}$ and $11^{\circ} 47^{\prime} \mathrm{E}$ of N , but again no systematic time variation is found to occur.

Fig. 1. Axial orientations of Central Mexican ceremonial centers. The orientations shown in Table 1 are averaged for a given site. Both S Xochicalco orientations are shown.

Table 1. Orientation of buildings determined with surveyor's transit.

Site	Structure	Alignment	Orientation	Remarks
Teotihuacan Lat. $19^{\circ} 42^{\prime} \mathrm{N}$	Street of Dead	Axis	$15^{\circ} 25^{\prime} \mathrm{E}$ of N	Ref. Million (1974)
Long. $98^{\circ} 51^{\prime} \mathrm{W}$	E-W Street Ciudadela	Axis Principal axis	$16^{\circ} 30^{\prime} \mathrm{S}$ of E $16^{\circ} 55^{\prime} \mathrm{S}$ of E	Ref. Million (1974) Ref. Million (1974)
Tenayuca Lat. $19^{\circ} 31^{\prime} \mathrm{N}$ Long. $99^{\circ} 11^{\prime} \mathrm{W}$	Pyramid	Base of steps on West wall looking South	$17^{\circ} 42^{\prime} \mathrm{W}$ of S	Building faces West. Postclassic
		South wall looking West	$16^{\circ} 27^{\prime} \mathrm{N}$ of W	
Tepozteco Lat. $19^{\circ} 00^{\prime} \mathrm{N}$ Long. $99^{\circ} 06^{\prime} \mathrm{W}$	Temple	Base of steps on West wall looking South	$18^{\circ} 00^{\prime} \mathrm{W}$ of S	Building faces West. Postclassic
Tula Lat. $20^{\circ} 05^{\prime} \mathrm{N}$ Long. $99^{\circ} 24^{\prime} \mathrm{W}$	Temple B	Base of steps on South wall looking West	$17^{\circ} 10^{\prime} \mathrm{N}$ of W	Building faces South
	North Ballcourt	West wall looking North	$16^{\circ} 25^{\prime} \mathrm{E}$ of N $17^{\circ} 06^{\prime} \mathrm{E}$ of N	Axis of ballcourt is E-W
		South wall looking East	$14^{\circ} 55^{\prime} \mathrm{S}$ of E $14^{\circ} 13^{\prime} \mathrm{S}$ of E	
	East Ballcourt	West wall looking North	$15^{\circ} 04^{\prime} \mathrm{E}$ of N	Axis of ballcourt is N-S
	Tula Chica Circular Temple	Base of steps looking North	$09^{\circ} 02^{\prime} \mathrm{E}$ of N	Building faces East. Postclassic
Tenoch titlan Lat. $19^{\circ} 27^{\prime} \mathrm{N}$ Long. $99^{\circ} 08^{\prime} \mathrm{W}$	Templo Major	South wall looking East	$07^{\circ} 06^{\prime} \mathrm{S}$ of E	Building faces West. Postclassic
Tlatelolco Lat. $19^{\circ} 28^{\prime} \mathrm{N}$ Long. $99^{\circ} 08^{\prime} \mathrm{W}$	Principal structure	West walls looking North	$11^{\circ} 47^{\prime} \mathrm{E}$ of N $09^{\circ} 57^{\prime} \mathrm{E}$ of N $09^{\circ} 43^{\prime} \mathrm{E}$ of N $09^{\circ} 36^{\prime} \mathrm{E}$ of N $08^{\circ} 58^{\prime} \mathrm{E}$ of N $09^{\circ} 30^{\prime} \mathrm{E}$ of N $09^{\circ} 09^{\prime} \mathrm{E}$ of N $09^{\circ} 30^{\prime} \mathrm{E}$ of N $07^{\circ} 39^{\prime} \mathrm{E}$ of N	9 consecutive building phases, listed in chronologgical order top to bottom. Building faces West. Postclassic
Teotenango Lat. $19^{\circ} 08^{\prime} \mathrm{N}$ Long. $99^{\circ} 35^{\prime} \mathrm{W}$	Base of acropolis	West stairway looking North	$13^{\circ} 33^{\prime} \mathrm{E}$ of N	Single measurement on western base. Postclassic
Teopanzolco Lat. $18^{\circ} 49^{\prime} \mathrm{N}$ Long $99^{\circ} 17^{\prime} \mathrm{W}$	Principal structure	Base of steps on West wall looking North	$00^{\circ} 43^{\prime} \mathrm{E}$ of N	Building faces West. Postclassic
```Cuicuilco Lat. 19 }\mp@subsup{}{}{\circ}1\mp@subsup{8}{}{\prime}\textrm{N Long. }9\mp@subsup{9}{}{\circ}1\mp@subsup{1}{}{\prime}\textrm{W```	Circular temple	Various portions of base of steps looking North	$07^{\circ} 38^{\prime} \mathrm{E}$ of N $05^{\circ} 42^{\prime} \mathrm{E}$ of N $01^{\circ} 43^{\prime} \mathrm{E}$ of N	Building faces East. Preclassic
Calixtlahuaca   Lat. $19^{\circ} 20^{\prime} \mathrm{N}$   Long. $99^{\circ} 40^{\prime} \mathrm{W}$	Temple of Tlaloc	Base of steps on East wall looking South	$01^{\circ} 50^{\prime} \mathrm{W}$ of S	Building faces East. Postclassic
	Temple of Quetzalcoatl (Circular temple)	Base of steps on East wall looking South	$01^{\circ} 12^{\prime} \mathrm{W}$ of S	Building faces East. Postclassic
Chalcatzingo   Lat. $18^{\circ} 42^{\prime} \mathrm{N}$   Long. $98^{\circ} 46^{\prime} \mathrm{W}$	Steps leading to principal reliefs	Base of steps (lower) looking East	$17^{\circ} 17^{\prime} \mathrm{S}$ of E	Building faces North. Preclassic
		Base of steps (upper) looking East	$21^{\circ} 22^{\prime} \mathrm{S}$ of E	

Table 1. (Continued)

Site	Structure	Alignment	Orientation	Remarks
Cholula   Lat. $19^{\circ} 03^{\prime} \mathrm{N}$   Long. $98^{\circ} 18^{\prime} \mathrm{W}$	Base of Adosada	South face looking   East	$26^{\circ} 16^{\prime} \mathrm{S}$ of E	Building faces West.   Classic
Manzanilla   Lat. $19^{\circ} 08^{\prime} \mathrm{N}$   Long. $98^{\circ} 08^{\prime} \mathrm{W}$	Teotihuacan period   ballcourt	Axis	$27^{\circ} 05^{\prime} \mathrm{N}$ of W	Axis of ballcourt is   E-W. Classic
	Aztec period   ballcourt	South wall looking   West	$27^{\circ} 02^{\prime} \mathrm{N}$ of W	Axis of ballcourt is   E-W. Postclassic
Lat. $18^{\circ} 47^{\prime} \mathrm{N}$   Long. $99^{\circ} 17^{\prime} \mathrm{W}$	Structure E	South wall looking   West	$00^{\circ} 25^{\prime} \mathrm{N}$ of W	Building faces South
	Ballcourt	South wall looking   West	$00^{\circ} 44^{\prime} \mathrm{N}$ of W	Axis of ballcourt is   $\mathrm{E}-\mathrm{W}$
	Temple of Plumed	Base of steps on West   Wall looking South	$16^{\circ} 45^{\prime} \mathrm{W}$ of S	Building faces West.   Serpent

At some sites a conscious effort to preserve a particular alignment in spite of intervening terrain is indicated. Two temples at Calixtlahuaca are good examples. They align nearly precisely in the same direction even though they are 100 meters apart and at different elevations; the measured axes are directed $1^{\circ} 50^{\prime}$ $S$ of $E$ and $1^{\circ} 12^{\prime} S$ of $E$. An equally conscious effort to distinguish orientations seems indicated at other sites. For example, at Xochicalco both the Ballcourt and Structure E (Saenz' 1967 notation) are laid out $1 / 2^{\circ}$ east of true north, but the Temple of the Plumed Serpent, built on a platform above the level of E , is skewed $17^{\circ}$ clockwise from the cardinal points, possibly reflecting Teotihuacan influence. The astronomically related relief decorations on the Plumed Serpent Temple add to its distinction from surrounding structures.

Among the most interesting buildings in the Central Mexican group is the Templo Mayor of Tenochtitlan (latitude $19^{\circ} 27^{\prime} \mathrm{N}$ ), for here we find evidence in the early postconquest literature alluding to a possible astronomical motive underlying the orientation of the building. Writing in the sixteenth century, Motolinia tells us that the festival called Tlacaxipeualistli
took place when the sun stood in the middle of Huicholobos, which was at the equinox, and because it was a little out of the straight, Montezuma wished to pull it down and set it right.
Considering Motolinia's statement in 1912, Maudslay infers that
"the priest and worshippers doubtless faced to the east, to watch the sun rise in the space between the two oratories." [See Fig. 2].

Maudslay's inference is further supported by a 1524 map of the Aztec capital which shows a face representing the sun flanked by the twin temples (Huicholobos) on the top of the Templo Mayor (Fig. 3).

One might expect from Motolinia's remarks that the axis of the Templo Mayor aligned due east-west; and yet measurements show that it was directed $7^{\circ} 30^{\prime}$ south of east. It is possible, however, that this apparent conflict between historical and archaeological evidence may be resolved by a careful consideration of the crucial equinoctial observation.

The position of the circular Temple of Quetzalcoatl, west of the Templo Mayor along its extended axis, makes it a suitable spot from which to view "the middle of Huicholobos." Furthermore Diego Duran (1970) suggests that a solar observer was stationed there when he describes the duties of the priest attending the temple:

[^0]

Fig. 2. View to the south showing the relative placement of the Templo Mayor (left) and circular Temple of Quetzalcoatl (right). Photo by Hartung from a model in the National Museum of Anthropology, Mexico City.

Fig. 3. Enlarged portion of a map of Tenochtitlan dated 1524. After Garcia (1910).


As shown in Fig. 4 an observer at the base of the circular temple would indeed see the equinoctial sun along an axis directed $7^{\circ} 30^{\prime} \mathrm{S}$ of $E$, but only after it had risen to an altitude of $22^{\circ}$ above the astronomical horizon. Twin temples on a platform 55 m above the ground would effectively frame the elevated sun for a ground-level observer 142 m away. For an observer situated at a higher level on the circular temple, the effective height of the Templo Mayor becomes 55 m plus the height of the observer.

It is apparent that the consistency of historical and archaeological evidence in the case of the Templo Mayor depends upon the credibility of estimates of its height. By relying on
postconquest accounts (including Motolinia's) of the dimensions of the temple, Marquina (1960) has estimated the height of the platform on which the oratories stood to have been about 42 m above ground level. The order of magnitude agreement between Marquina's height estimate and estimates based on archaeoastronomical evidence suggests that Motolinia's statements concerning the function of the skewed Templo Mayor are consistent with his statements concerning its dimensions.

The method offered as a possible means of reconciling history and archaeology in the case of Templo Mayor emphasizes the importance of considering dimensions in any study of the astronomical relations of building orientations.


Fig. 4. Sketch showing the rising equinoctial sun appearing in the space between the oratories for a ground level observer.

By varying the elevation of the observer relative to the observed event, the position of equinox sunrise can be shifted horizontally to match many of the orientations listed in Table 1 (especially those in the range $0^{\circ}$ to $10^{\circ} \mathrm{E}$ of N ). For larger deviations from the cardinal points, other astronomical possibilities can be suggested. Alignments with a large skew could be related to a sunrise or sunset position on some significant agricultural, civil, or religious date of the year.

Motolinia's statement about the orientation of Tenochtitlan may be contrasted with that of Sejourne (1957) who, after Marquina, attributes all peculiar orientations to alignment with the sunset position on the days of its passage through the zenith:

In keeping with Nahuatl cosmology, it is the solar monument which dictates the orientation of all the others. This orientation offers an interesting peculiarity in that the west-east axis, representing the trajectory of the drama of incarnation and liberation adopted all over Mesoamerica, is modified 17 degrees to the north. After careful investigation, the architect Ignacio Marquina finally discovered that this direction was caused because the pyramid faced the point where the sun is hidden the day it passes directly overhead [translated from the French].
Sunset on the day of the zenith passage occurred $2112^{\circ} \mathrm{N}$ of W in precolumbian Central Mexico (not $17^{\circ}$ as Sejourne implies). But allowing for elevation differences, this direction could be a match for some of the alignments with a large skew. Indeed, Girard (1966) has
emphasized the importance of the position of zenith passage sunrise for the present-day Maya who consider that direction to determine the cardinal east point.

The Pleiades star group must be emphasized as a likely motive behind the Teotihuacan orientation. There, an east to west baseline (Dow 1967, Millon 1974) between the pecked cross petroglyph about 50 m north of the Viking Group on the Street of the Dead and a similar marker on Cerro Colorado, 3 km to the west, points, within $1^{\circ}$, to the position of disappearance of the Pleiades in the west during the earliest building phases at Teotihuacan. That Teotihuacanos may have considered the Pleiades a significant stellar group is suggested by their association with the local zenith. Not only would the Pleiades have passed close to the zenith when transiting the Teotihuacan meridian, but also their heliacal rising (first annual pre-dawn appearance) would have occurred on the same day as the first annual passage of the sun through the zenith. Thus, the Pleiades could have served both to indicate the position of the local zenith and to announce the day of the sun's passage through it. Fig. 5 is a simulated view (reconstructed with the aid of a Planetarium) of the western horizon of Teotihuacan as viewed from the marker north of the Viking Group. The Cerro Colorado petroglyph is behind the large tree (arrow). The stars appear in their A.D. 150 positions relative to the horizon. The Pleiades is the conspicuous


Fig. 5. The western horizon of Teotihuacan in A.D. 150 showing the Pleiades immediately prior to extinction. The observer stands at the marker 50 meters north of the Viking group viewing the Cerro Colorado petroglyph (arrow).
group situated above the arrow. Other possible astronomical motives for the Teotihuacan alignments have been discussed by Dow (1967). An alternative explanation for the Teotihuacan building plan has recently been advanced by Heyden (1975) who suggests that a cave beneath the Pyramid of the Sun may have determined the placement of that building.

In conclusion, no single explanation, astronomical or otherwise, can be advanced to explain the peculiar orientation of all precolumbian buildings in Central Mexico. The aforementioned astronomical events have been considered in discussing the orientation schemes not only because they coincide closely with alignments taken at the sites, but also because (a) the surviving literature tells us that these astronomical constructs were of considerable importance in Native American religion and folklore, and (b) they could have served to establish important dates in the civil, agricultural, or religious calendar, e.g., the heliacal rising of the Pleiades is still used among the contemporary Chorti Maya to demarcate the planting season (Girard 1966).

In 1974, Franz Tichy published the results of an aerial survey of the highlands of Mexico in the region of Cholula, Puebla, and Tlaxcala. He found that postconquest fields, villages, and towns in the area aligned generally east of north. Three distinct families of axial directions are evident in his data: a group near $7^{\circ}$, a group near $17^{\circ}$, and a group near $26^{\circ}$ east of north. The existence of similarly oriented precolumbian buildings in the Mexican highlands led Tichy to postulate that the later structures preserve directions of importance in antiquity. Tichy's survey adds an interesting dimension to the study of precolumbian orientations. As a result of his work, we can include the ruins at Pedrera ( $7^{\circ} \mathrm{E}$ of N ), Xochitecatl ( $4^{\circ} \mathrm{E}$ of N ), Cacaxtla ( $3^{\circ} \mathrm{E}$ of N ), Coapan ( $15^{\circ} \mathrm{E}$ of N ), and La Luna ( $12^{\circ} \mathrm{E}$ of N ) in a list of clockwiseskeved ceremonial centers in Central Mexico.

Acknowledgments. The authors are grateful to Arqto Horst Hartung for a critical reading of this
manuscript and to Joseph Carr of the Planetarium of the University of South Florida for his assistance in the preparation of Fig. 5.

Aveni, A. F.
1975 Possible astronomical orientations in ancient Mesoamerica. In Archaeoastronomy in pre-Columbian America, edited by A. Aveni, pp. 163-90. University of Texas Press, Austin.
Aveni, A. F., S. L. Gibbs, and H. Hartung
1975 The Caracol Tower at Chichen Itza: an ancient astronomical observatory? Science 188:977-85.
Dow, J.
1967 Astronomical orientations at Teotihuacan, a case study in astroarchaeology. American Antiquity 32:326-34.
Duran, Diego
1970 Book of the gods and rites and the ancient calendar. Translated and edited by F. Horcasitas and D. Heyden. University of Oklahoma Press, Norman.
Garcia, G., (Editor)
1910 The true history of the conquest of New Spain by Bernal Diaz del Castillo. Vol. III, pp. 26-27. Hakluyt Society, Mexico.
Girard, R.
1966 Los Mayas. Libro Mexicano, Mexico.
Heyden, Doris
1975 An interpretation of the cave underneath the pyramid of the sun in Teotihuacan, Mexico. American Antiquity 40:131-47.
Maudslay, A. P.
1912 A note on the position and extent of the great temple enclosure of Tenochtitlan. Proceedings of the 18th International Congress of Americanists, pp. 173-75. London.
Marquina, I.
1960 El templo mayor de Mexico. I.N.A.H., Mexico.
Millon, R. (Editor)
1974 Urbanization at Teotihuacan, vol. 1. The Teotihuacan Map University of Texas Press, Austin.
Saenz, C.
1967 Nuevas exploraciones $y$ hallazgos en Xochicalco 1965-6. I.N.A.H., Bulletin 13.
Sejourne, L.
1957 Pensamiento y religion en el Mexico antiguo. Fondo de Cultura Economica, Mexico, Breviariro 128.
Tichy, Franz
1974 Deutung von Orts-und Flurnetzen in Hochland von Mexiko als kultreligiose Reliktformen altindianischer Besiedlung. Erdkunde 28:194-207.

# PRISMATIC BLADE REPLICATION 

## J. B. Sollberger <br> L. W. Patterson

A series of experiments to replicate prismatic blades with use of direct percussion, indirect percussion, and pressure techniques are discussed. Similar prismatic blades can be produced by a number of techniques and


[^0]:    At dawn when the sun was rising, the priest again sounded his drum, at the hour when bells ring at daybreak today. With this sound he announced the birth of the day, and thus travelers and strangers prepared for their journey according to that signal, as if they had been prohibited from leaving the city until then. Likewise, the farmers, traders, and merchants made themselves ready-with that sign-some going to the market places, others to their fields.

